翻訳と辞書
Words near each other
・ Recti muscles
・ Rectifi
・ Rectifiable set
・ Rectification
・ Rectification (geometry)
・ Rectification (law)
・ Rectification of names
・ Rectified 10-cubes
・ Rectified 10-orthoplexes
・ Rectified 10-simplexes
・ Rectified 120-cell
・ Rectified 24-cell
・ Rectified 24-cell honeycomb
・ Rectified 5-cell
・ Rectified 5-cubes
Rectified 5-orthoplexes
・ Rectified 5-simplexes
・ Rectified 6-cubes
・ Rectified 6-orthoplexes
・ Rectified 6-simplexes
・ Rectified 600-cell
・ Rectified 7-cubes
・ Rectified 7-orthoplexes
・ Rectified 7-simplexes
・ Rectified 8-cubes
・ Rectified 8-orthoplexes
・ Rectified 8-simplexes
・ Rectified 9-cubes
・ Rectified 9-orthoplexes
・ Rectified 9-simplexes


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Rectified 5-orthoplexes : ウィキペディア英語版
Rectified 5-orthoplexes

In five-dimensional geometry, a rectified 5-orthoplex is a convex uniform 5-polytope, being a rectification of the regular 5-orthoplex.
There are 5 degrees of rectifications for any 5-polytope, the zeroth here being the 5-orthoplex itself, and the 4th and last being the 5-cube. Vertices of the rectified 5-orthoplex are located at the edge-centers of the 5-orthoplex. Vertices of the birectified 5-orthoplex are located in the triangular face centers of the 5-orthoplex.
== Rectified 5-orthoplex==

32 t1
|-
|bgcolor=#e7dcc3|Cells||240 total:
80
160
|-
|bgcolor=#e7dcc3|Faces||400 total:
80+320
|-
|bgcolor=#e7dcc3|Edges||240
|-
|bgcolor=#e7dcc3|Vertices||40
|-
|bgcolor=#e7dcc3|Vertex figure||40px
Octahedral prism
|-
|bgcolor=#e7dcc3|Petrie polygon||Decagon
|-
|bgcolor=#e7dcc3|Coxeter groups||BC5, ()
D5, ()
|-
|bgcolor=#e7dcc3|Properties||convex
|}
Its 40 vertices represent the root vectors of the simple Lie group D5. The vertices can be seen in 3 hyperplanes, with the 10 vertices rectified 5-cells cells on opposite sides, and 20 vertices of a runcinated 5-cell passing through the center. When combined with the 10 vertices of the 5-orthoplex, these vertices represent the 50 root vectors of the B5 and C5 simple Lie groups.
E. L. Elte identified it in 1912 as a semiregular polytope, identifying it as Cr51 as a first rectification of a 5-dimensional cross polytope.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Rectified 5-orthoplexes」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.